میرنیوز
به گزارش ایسنا و به نقل از اینوویشن اوریجینز، در بسیاری از سیستمهای مبتنی بر "یادگیری عمیق" نحوهی رخ دادن روند یادگیری مشخص نیست. اکنون محققان دریافتند که چگونه یک سیستم تشخیص تصاویر میتواند در مورد محیط خود بیاموزد. محققان با متمرکز کردن سیستم بر روی اطلاعات کم اهمیتتر این سیستم یادگیری را سادهسازی کردند.
به گفتهی دانشگاه گرونیگن(Groningen)، سیستم مورد نظر نوعی شبکهی عصبی پیچشی(CCNs) است.
شبکه عصبی پیچشی گونهای از یادگیری عمیق در هوش مصنوعی است که از زیستشناسی نشات گرفته است. این سیستمها تشخیص تصاویر را به لطف ارتباط میان هزاران "نورون" میآموزند. این سیستم به گونهای عملکرد مغز را شبیهسازی میکند. به گفتهی استفانیا تالاورا مارتینز(Estefania Talavera Martinez)، محقق دانشگاه گرونینگن، نحوهی کار این شبکهی عصبی تاکنون نامشخص بود.
او از این سیستم برای بررسی رفتار انسان و تحلیل تصاویری که توسط دوربین دستی گرفته شده بود استفاده کرده و به این وسیله تحقیقات خود در مورد نحوهی واکنش افراد به غذا را انجام داده است. او همچنین میخواست این سیستم هوش مصنوعی موقعیتهای مختلفی که افراد در آن در تماس با غذا قرار میگیرند را تشخیص دهد. مارتینز میگوید: در این فرایند من متوجه بروز اشکالاتی در تشخیص محیط تصاویر توسط این سیستم شدم و میخواستم علت بروز این خطاها را بدانم.
او به بررسی بخشهایی از تصویر که توسط شبکه عصبی پیچشی برای تشخیص موقعیت استفاده میشد پرداخت و به این نظریه رسید که این سیستمها از جزئیات کافی در تصویر استفاده نمیکنند. او توضیح میدهد: برای مثال اگر سیستم هوش مصنوعی یک لیوان را با محیط آشپزخانه مرتبط بداند بنابراین در دستهبندی اتاق نشیمن و دفتر کار که در آنها نیز از لیوان استفاده میشود، دچار مشکل خواهد شد.
برای حل این مشکل مارتینز و همکارش دیوید مورالز(David Morales) و بیتریز رمسیرو(Beatriz Remeseiro) تصمیم گرفتند توجه هوش مصنوعی را از اهداف اصلی خود منحرف کنند.
آنها شبکهی مصنوعی پیچشی را با استفاده از تصاویر استانداردی از هواپیماها و ماشینها آموزش دادند. سپس بخشهایی که هوش مصنوعی برای طبقهبندی تصاویر و تشخیص محیط استفاده میکرد را تار کردند. آنها این سیستم را به استفاده از سایر بخشهای تصویر برای تشخیص مجبور کردند و با اضافه شدن این دادهها، هوش مصنوعی قادر به طبقهبندی بهتر تصاویر شد. به گفتهی محققان این روش آموزش هوش مصنوعی سادهتر است و زمان کمتری میبرد.
انتهای پیام
منبع : خبرگزاری ایسنا
بررسی چالش های حوزه دارو؛ از کسری بودجه دارویار تا عهدشکنی تامین اجتماعی
مصرف ماست احتمال ابتلا به سرطانهای کُشنده را کاهش میدهد
ماست احتمال ابتلا به سرطانهای کُشنده را کاهش دهد؟
سامانه جدید وزارت علوم برای پاسخگویی به شکایات طراحی و راهاندازی شد
بیشترین درخواست «پیشینه پژوهش» از سوی کاربران دانشگاه آزاد
معرفی برگزیدگان ریسرچپیچ و اینوتکسپیچ تهران
دستور وزیر علوم برای تامین امنیت خوابگاهها با مشارکت بخش خصوصی
منابع مالی برای رسیدن به رتبه علمی ۱۴ پرداخت نشد
دستور وزیر علوم برای تامین امنیت خوابگاهها
کمبود ۴۵۰ قلم دارو در کشور
ادغام صدا و تصویر در یک دستگاه و پایان عصر اسپیکرها
بازدید وزیر علوم از خوابگاهها و فضای پیرامون دانشگاه صنعتی شریف
سامانه جدید وزرت علوم برای پاسخگویی به شکایات طراحی و راهاندازی شد
اعطای تسهیلات تا سقف ۱۵ میلیارد تومان به برگزیدگان «جایزه ملی نکست»
وزیر علوم: رئیس اتحادیه کانون های وکلا، وکالت اولیای دم را بر عهده میگیرد
راه اندازی اتاق فکر تخصصی در زمینه کاهش آسیبهای اعتیاد
راهکار کنترل حالت تهوع در بارداری
چت بات هوش مصنوعی ایلان ماسک رونمایی می شود
معرفی تجهیزات پزشکی ایرانساخت در نمایشگاه چین
آنچه مردان باید از پروستات بدانند
رشد چشمگیر روشهای نوین درمان سرطان در ایران
جذب امریه سربازی در وزارت ارتباطات برای اعزام ۱۴۰۴
تعامل حوزههای علمیه قم و نجف تقویت میشود
پیگیری دانشگاه تربیت مدرس در خصوص ارتقای امنیت فضای اطراف دانشگاه
نشست تخصصی تجارت فناوری ۹ اسفند برگزار میشود
بستههای حمایتی معاونت علمی برای رشد اقتصاد هوش مصنوعی
پارچه درخشانی که نور و صدا تولید میکند!
رقیب «دیپ ریسرچ» اوپن ای آی و گوگل ارائه شد
تشکیل جلسه فوقالعاده کمیسیون آموزش مجلس برای بررسی موضوع قتل دانشجوی دانشگاه تهران
کارت ورود به جلسه آزمون کارشناسیارشد سال ۱۴۰۴ منتشر شد